The student will represent verbal quantitative situations algebraically and evaluate these expressions for given replacement values of the variables.

Hints and Notes

Order of Operations:

- Parentheses
- Exponents
- Multiplication and Division
- · Addition and Subtraction

Key Words:

- (+) addition, sum, increase, total
- (-) subtraction, difference, minus, less, less than, decrease
- (x) multiplication, <u>product</u>, times, twice(2), double(2)
- (÷) division, <u>quotient,</u> into, half, shared
- "the word <u>THAN</u> switches the order of words

TI-83 Help

- When substituting values for variables use ()
- Always put negative #'s in ()

Store values for variables:

#Sto alpha letter enter 10-7 L

Practice A.1 Expressions

- 1 Translate: Six less than the product of eight and a number
- (2) 46+12 for a=8, 6=5, c=-4
- 3) the sides of a triangle are 2x-1, x+5, and 3x-7. What is the perimeter.
- (4) Simplify 4a-5(6+7a)
- 3 Simplify baz for a=3
- @ 3(12-4) + 32 + 4. (-6) Simplify
- 7-1-101+ 3-39 Simplify
- 3 JX+4.p for X=8, 4=-28 p== ____
- $9) \frac{x^2 + y^2}{x^2 y^2}$ for x = -1, y = -4
- 10 Simplify = = (4x-16)

The student will solve multi-step linear and quadratic equations in two variables, including

- a) solving literal equations (formulas) for a given replacement variable.
- b) justifying steps used in simplifying expressions and solving equations, using field properties and axioms of equality that are valid for the set of real numbers and its subsets.

E3TON bns ETNIH

Properties:

- Associative Property (+) a + (b+c) = (a+b) + c(x) a(bc) = (ab)c
- Commutative Property
 - (+)a+b+c=b+a+c
 - (x) abc = cba
- Distributive Property a(b+c)=ab+ac
- Identity Property
 - (+) a + 0 = a
 - (x) a(1) = a
- Inverse Property
 - (+) a + (-a) = 0(x) $a \cdot \frac{1}{a} = 1$
- · Reflexive Property
- Symmetric Property If a = b then b = a
- Transitive Property If a = b and b = c then a = c
- Addition Property of Equality

Adding the same term to both sides of the equation

Subtraction Property of Equality

> Subtracting the same term from both sides of the equation

Multiplication Property of Equality

> Multiplying the same factor to both sides of the equation

Division Property of Equality Dividing the same divisor on both sides of the equation

Properties

- 1. Name the properties:
 - a) 2+5+8=5+2+8 ____
 - b) 6(3x+2) = 18x+12
 - C) (x+3)+2 = x+(3+2) _
 - d) 4+(-4)=0____
- 2. Which property of real numbers justifies going from step 3 to step 47

(given)
$$-3(4x+2)+7x=39$$

(step 1)
$$-12x-6+7x=39$$

(step 2)
$$-5x-6=39$$

(step 3)
$$-5x = 45$$

$$(step 4) \qquad x = -9$$

- A Addition Property of Equality
- B Additive Inverse Property
- Distributive Property
- D Division Property of Equality
- 3. Which property justifies the equation

- A Commutative Property of Multiplication
- **B** Associative Property of Multiplication
- C Multiplication Property of Equality
- D Distributive Property
- 4. Which property justifies the statement $\frac{-2}{3} \cdot \frac{-3}{3} = 1$?
 - A Multiplication Identity Property
 - B Multiplication Inverse Property
 - C Multiplication Property of Equality
 - O Commutative Property of Multiplication

Property TEI

 $x \ge 4$

10. The following inequality has been solved. In each step, provide the property that justifies each step by clicking and dragging the property to each step.

Given	Olstributive Property	Associative Property of Addition	Multiplicative Inverse Property
Commutative Property of	Addition Property of	Associative Property of Multiplication	Zero Property of
Addition	Inequality		Multiplication
Commutative Property of Multiplication	Subtraction Property of Inequality	Additive inverse Property	Property of Negative One
Multiplication Property of	Division Property of	Substitution Property of Inequality	Reflexive Property of
Inequality	Inequality		Inequality
Reflexive Property of	Symmetric Property of	Transitive Property of	
Inequality	Inequality	Inequality	

$$-3(-2x-7)+3 \le 10(2x-2)-12$$

$$(x+3) = 4+3x$$

$$7(x+3) = 4+3x$$

$$7x+21 = 4+3x$$

$$7x+21 = 3x+4$$

$$4x+21 = 4$$

$$-14x+24 \le -32$$

$$-14x \le -56$$

$$\frac{-14x}{-14} \le \frac{-56}{-14}$$

$$x = \frac{1}{4}(-17)$$

The student will solve multistep linear and quadratic equations in two variables, including d) Solving multistep linear equations algebraically and graphically.

HINTS and NOTES

Solving Multistep Equations

- Distribute
- · Get rid of fractions
- · Combine Lila Perms On Same side of equal sign
- · Get rid of add/sub.
- · Cet rid of mult/div.

DFCAM

X=#

When all variables go away:

Equations

- (1) Solve 4(x+1) = 2(11-x)
- @ 501UR 2-3×=3×+9
- 3 Solve X+3 = 2x+6
- (9) Solve -5x-10=2-(x-4)
- 3 Solve 5(x+2)+3(x-6)=2(x+4) -
- (6) TE1: Drag and Drop these equations to the boxes below:

$$10(x+3)+8=18x+30$$

$$4(6a+3)=6(4a+2)$$

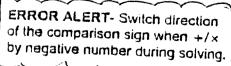
$$12(c+3)-30=12c+36$$

$$16n-20=4(5n+1)$$

One Solution	No Solutions Ø	Infinitely Many Solutions 60

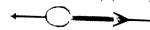
The student will solve multistep linear inequalities in two variables, including

- a) Solving multistep linear inequalities algebraically and graphically;
- b) Justifying steps used in solving inequalities, using axioms of inequality and properties
- of order that are valid for the set of real numbers and its subsets;
- c) Solving real-world problems involving inequalities

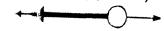

HINTS and NOTES

Reminder: Inequalities have a solution set and can be written in set builder notation $\{x \mid x \le 32\}$

"For all x such that x is less than or equal to 32.*

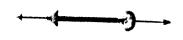

To solve inequalities:

- · USE OFCAM
- · THEN GRAPH THE SOWTIAN



Shading of Graphs:

> is greater than (open-right)


< is less than (open-left)

≥ is greater than or equal to (closed-right)

≤ is less than or equal to (closedleft)

Inequalities

- 1 Solve -5x+5>25
- 3) 50 lue 2x-11≥5(x+3)
- 3 50 lue = (2x+8) = 4x-2
- (4) Joel sells ice cream cones at the country fair. He has to rent equiptment for 836 and spend \$.52 on ingredients for each come. what is the minimum number of ice cream comes Joel must sell at \$1.40 each in order to make a profit?
- (5) Solve and graph: -8(3x-a) ≥-200
- (6) Circle the incorrect step in each Student's work

Sam's	Joe's
Solution	Solution
$3-7x \ge -6$ $7x-3 \ge 6$ $7x \ge 9$ $x \le \frac{9}{7}$	$3-7x \ge -6$ $-7x \ge -3$ $x \ge \frac{-3}{7}$

